
helyOS Developer Manual
Release 2.0

Fraunhofer IVI

Apr 23, 2024

CONTENTS

1 The helyOS Framework 3
1.1 Overview . 3
1.2 Definitions . 4
1.3 How It works . 5
1.4 Software Components . 8
1.5 Data Formats . 9

2 helyOS Configuration 15
2.1 Getting Started . 15
2.2 How to Configure helyOS Core as Backend . 18
2.3 Admin Dashboard . 19

3 helyOS and Client Apps 29
3.1 Application accounts . 29
3.2 Communication . 29
3.3 Requesting Missions . 33
3.4 Handling the Mission Execution . 33

4 helyOS and Microservices 35
4.1 Missions Request: from App to helyOS core . 35
4.2 Service Requests: from helyOS to Microservices . 36
4.3 Service Response: from Microservices to helyOS . 37
4.4 Models Description . 42

5 helyOS and Agents 45
5.1 Exchange, Routing-keys and Queues in RabbitMQ . 45
5.2 Code Examples . 46
5.3 Check in agent in helyOS . 50
5.4 Data Flow between helyOS and Agents . 53
5.5 helyOS Reserves Agent for Mission . 53
5.6 helyOS Sends Assignment to Agent . 53
5.7 Agent Requests a Mission . 55

6 Applications in yard automation 57
6.1 Implementation of a Yard Automation Application . 57
6.2 Examples of missions using helyOS . 59

7 FAQ 63
7.1 Why not code everything in a single backend? Why do I need helyOS? 63
7.2 What are microservices? . 63
7.3 What does it means that “helyOS orchestrates microservices”? . 63

i

7.4 What does it means that “helyOS orchestrates assignments”? . 64
7.5 Can helyOS calculate trajectory paths? . 64
7.6 Can I send several missions at once to one automated vehicle? . 64
7.7 What is the difference between mission and assignment? . 64
7.8 What is the data format for the agent sensors? . 64
7.9 I want to use an online server for path calculation (or map information) which has its own API. How

can I integrate with helyOS? . 64
7.10 What is the difference between helyOS and Automation App? . 66

ii

helyOS Developer Manual, Release 2.0

January 22, 2024

(version 2.0)

Fraunhofer IVI Zeunerstrasse 38 01069 Dresden Germany

CONTENTS 1

helyOS Developer Manual, Release 2.0

2 CONTENTS

CHAPTER

ONE

THE HELYOS FRAMEWORK

helyOS is a framework for accelerating the development of yard automation projects.

helyOS has a microservice architecture tailored to applications for managing autonomous vehicle fleets in delimited
areas. It provides guidelines for the domain-driven design of applications in yard automation. The software core works
as a ready-to-use backend for a control tower and is able to orchestrate microservices and dispatch assignments for
complex missions.

1.1 Overview

helyOS is a framework for accelerating the development of yard automation projects.

In the helyOS framework, developers create and tailor autonomous driving applications by adding and combining mi-
croservices via a graphic interface or programmatically via the helyOS database. helyOS provides a clean architecture
guide where microservices are ascribed to specific domains. Microservices of each domain remain decoupled, which
allows teams to change, remove or add code without affecting other parts of the application.

1.1.1 Why you should use helyOS

Product Managers

• The helyOS architecture is scalable and resilient. This means there are fewer problems to resolve in production.

• It reinforces domain driven design. This means: clear responsibility boundaries between teams.

Software & Frontend Developers

• helyOS is reusable, it provides a ready-to-use backend that is configurable via dashboard.

• The helyOS GraphQL API gives full control of the application data to the frontend developer. It is not necessary
to change any line of code in the backend to access the data in the frontend.

Motion Algorithm Programmers

• helyOS provides a ready-to-use environment to interact with robot vehicles. Programmers can focus on the
development and evaluation of their motion algorithms.

• It is programming language independent, and you can host the algorithms in the computer or in the cloud, e.g.,
as a paid service.

Automation Engineers

• Complete flexibility for automated vehicles regarding assignment data formats.

• Flexibility regarding the degree of automation of agents.

3

helyOS Developer Manual, Release 2.0

• Embedded security mechanisms.

1.2 Definitions

1.2.1 Message broker

Message brokers are intermediary computer program modules in telecommunication or computer networks through
which software applications communicate by exchanging formally defined messages.

1.2.2 RabbitMQ

It is the helyOS message broker that delivers the assignments to the agents and communicates with the autonomous
domain.

1.2.3 Agent

A device that receives assignments. E.g., automated vehicles, cameras, traffic lights. . Agents can be moving devices
such as automated vehicles, but also stationary objects, providing data such as cameras, traffic lights. Each agent must
have a unique identifier code and be connected as a client to RabbitMQ.

1.2.4 helyOS core

The main component of the system, enclosing the business logicsand the orchestration of services and assignments to
the agents. It can also work as the backend for web applications.

1.2.5 Assignment

A task or group of tasks delivered to the agent by the helyOS core via rabbitMQ. The agent must complete the en-
tire assignment without the support of the helyOS core. The agent must report the assignment status as “running”,
“completed”, “aborted” or “failed”. helyOS core can of course send a cancel request to the agent for terminating the
assignment.

1.2.6 Mission

A mission consists of a group of one or more assignments, delivered to one single agent or to several agents. It usually
originates from the client: The client creates a mission and helyOS uses the microservices to decompose the mission
into several assignments. The microservices will also define the order of execution of the assignments. In principle,
the client does not create assignments. Rather, the client creates missions and the microservices create assignments.

4 Chapter 1. The helyOS Framework

helyOS Developer Manual, Release 2.0

1.2.7 Instant Actions

Identical to the VDA5050 protocol, helyOS core can send instant commands from the user interface to the agents.
These commands are independent of any assignment.

1.2.8 Microservices

The approach by which functionalities are implemented using small and independent services. Each one of the small
services is provided by oneindependent server, maximizing decoupling and facilitating the development according
to specific domains. The word microservices usually refers to “microservice architecture”, in this documentation,
however, we use the word to define a single-functionality service.

1.2.9 Autonomous domain (also automaton domain)

Corresponds to the robots, cameras, devices and agents connected to rabbitMQ. When the helyOS core dispatches an
assignment to any member of the autonomous domain, it expects this assignment to be resolved inside this domain.
helyOS core still can cancel assignments.

1.2.10 Yard

A delimited area where agents perform their assignments. It contains map objects.

1.2.11 Map object

The digital representation of any object or map layer inside the yard (space where the agents move): obstacle, park-
ing areas, road, buildings, docking gates. The data format interpretation of these objects is the responsibility of the
microservices and/or front-end.

1.2.12 Agent check in

The helyOS framework supports several yards. In real-world applications, the agent needs to authenticate itself every
time it enters or switches the yard. This is done by the agent check-in.

1.2.13 Difference between mission and assignment

A yard automation application is defined in terms of missions. To complete a mission, agents must perform one or
more assignments. helyOS receives the request of a mission and dispatches assignments to one or more agents.

1.2.14 What is possible in helyOS framework?

1.3 How It works

1.3.1 Software Components

The helyOS framework contains three software components:

1.3. How It works 5

helyOS Developer Manual, Release 2.0

6 Chapter 1. The helyOS Framework

helyOS Developer Manual, Release 2.0

• helyOS core: a flexible backend software that receives mission requests from frontend
apps and uses microservices to transform these requests into robot assignments.

• helyOS Agent SDK: a Python library used to connect agents (robots and vehicles) to
helyOS core via rabbitMQ.

• helyOS JavaScript SDK: a JavaScript library used to create frontend apps that com-
municate with helyOS core.

Each application built within the helyOS framework is shaped by connecting helyOS
with function-specific microservices, e.g., routing, trajectory planning, map update,
swarm behavior, etc.

1.3.2 Control Strategy

The helyOS framework embraces the principle of separation of concerns, featuring cen-
tralized command but distributed processes. It adopts a microservice architecture where
expert subsystems are independently developed according to predefined domains. This
approach complies with the use cases found in yard automation and smart farming and
it is in line with the most modern practices in system integration.

In contrast to the traditional “leader-follower” approach, helyOS core does not micro-
manage assignments. It distributes the assignments including all necessary data upfront
to the agent, who is part of the autonomous domain of the application. This allows the
agent maximum independence while still retaining the possibility of exchanging data
with expert systems inside the autonomous domain. This data exchange can be used,
for example, in real-time corrections commands to support a running assignment. This
approach favors the gradual development of more autonomous agents.

Note: Note that agents can also request missions for themselves from helyOS core. This feature can be exploited when
the resolution of a given assignment is not possible inside the autonomous domain, for example, to overcome deadlocks
or to emulate a leader-follower approach.

1.3.3 Data Formats

helyOS uses JSON formats. Except for a minimum set of required fields used to control
the data flow, developers can freely choose the data structure of the assignment, map
and sensor data. In the helyOS framework, most of the data formats are resulted from
agreements between user interface programmers, mission planner developers and the
robot controller developers.

1.3.4 Communication

helyOS uses the HTTP protocol to communicate with microservices and frontends, and
RabbitMQ to communicate with the agents. helyOS uses RabbitMQ and consequently
the AMQP protocol. AMQP originated from the financial industry, where it is used for
the safe communication of financial data. Its main developers are Cisco, Red Hat, IONA
and Twist. This protocol allows both produce/consume queue and publish/subscribe
patterns with advanced routing features. RabbitMQ is also a reference for microservice
architecture and the development of remote procedure calls.

1.3. How It works 7

helyOS Developer Manual, Release 2.0

1.4 Software Components

1.4.1 helyOS core

The helyOS core is a nodeJS software that works as a ready-to-use backend for control
tower software in yard automation. It has five responsibilities:

1. Automated configuration of the rabbitMQ server to be used as message broker for yard
automation (requires admin permission).

2. Collection of the yard state (obstacles, map, agent ids and positions, etc.).

3. Provision of an API endpoint for frontend apps for creating missions and accessing the
yard state.

4. Orchestration of mission assignments that are sent to the vehicles via rabbitMQ. It is
important to stress that the “orchestration” includes the conditional and ordered dispatch
of assignments to each agent according to its reported state.

5. Orchestration of microservices used to calculate the assignment data.

Source Code: available upon request.

1.4.2 helyOS JavaScript SDK

Web apps interact with helyOS via HTTP protocol using the GraphQL language. To
accelerate the development, one can optionally use the helyOS JavaScript SDK, which
wraps the GraphQL commands in convenient typescript functions. helyOS JavaScript
SDK has the following functionalities:

1. create missions in helyOS core

2. cancel missions in helyOS core

3. send instant action commands to the agents via helyOS core

4. get yard and agent live data

5. get mission and assignment data

6. all setting commands available in the helyOS dashboard (requires admin permission)

Source Code: https://github.com/FraunhoferIVI/helyOS-javascript-sdk

Documentation: https://fraunhoferivi.github.io/helyOS-javascript-sdk/

1.4.3 helyOS Agent SDK

Agents (vehicles or robots) are connected to helyOS through rabbitMQ. The connec-
tion and communication with helyOS can be implemented using the helyOS-agent-sdk
python package.

The helyOS-agent-sdk includes the following functionalities:

1. connection to rabbitMQ server

2. registration in helyOS yard (check in)

3. report sensors and agent states to helyOS core.

4. receive assignments and instant action commands from helyOS core

8 Chapter 1. The helyOS Framework

https://github.com/FraunhoferIVI/helyOS-javascript-sdk
https://fraunhoferivi.github.io/helyOS-javascript-sdk/

helyOS Developer Manual, Release 2.0

5. communicate with other agents and devices in the same RabbitMQ network

Source Code: https://github.com/FraunhoferIVI/helyOS-agent-sdk

Documentation: https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/index.
html

Fig. 1: helyOS framework

1.5 Data Formats

helyOS uses JSON formats. Except fora minimum set of required fields used by helyOS
to control the data flow, developers can freely choose the data structure of the assign-
ment, map and sensor data. In the helyOS framework, most of the data formats used in
a project will result from agreements between user interface programmers, path planner
developers and the agent controller developers.

1.5.1 Yard and map formats

helyOS is very flexible regarding map data structure. The map information is organized
by yards, with each yard containing n map objects. Each map object has a JSON data
field.

The map object data can contain any kind of information; from a simple polygon rep-
resenting an obstacle to a complete Geo-JSON data structure representing a map layer.
The definition of map objects and the alignment with other entities of a project lies
within the responsibility of the developers.

• helyOS yard

– id: database id, automatically generated.

– uid: string that identify the yard.

– name: name of the yard.

– lat: latitude map origin.

– lon: longitude map origin.

1.5. Data Formats 9

https://github.com/FraunhoferIVI/helyOS-agent-sdk
https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/index.html
https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/index.html

helyOS Developer Manual, Release 2.0

– alt: altitude map origin.

– map_data: (optional) JSON field containing relevant rendering information or metadata.

– data_format: (optional) name of the map data format. Example: “Trucktrix-Map”

An agent arriving at an automated yard must perform the check-in for that yard. The
check-in procedure registers the agent to the helyOS system. The agent must provide
the uid of the respective yard. helyOS returns the map origin as part of the Check-In-
Response.

• helyOS map object

– yard_id: database id of the yard.

– name: name of the map object.

– data: JSON field (defined by the developer).

– type: string to identify the object.

– metadata: (optional) JSON field containing any relevant information.

– data_format: (optional) name of the map data format. Example: “Trucktrix-Map”

1.5.2 Assignment data format

helyOS is agnostic regarding the assignment data format. Nevertheless, the assignment
must be enclosed in a JSON structure together with other fields that will help helyOS to
route the assignment to the correct agent.

In the helyOS framework, the assignment is originated from a microservice [*]. That
is, the developers must create a microservice that produces the assignment data. The
microservice’s response must have the following data structure:

Listing 1: The microservice response to create assignments.

HelyOSMicroserviceResponse {

request_id?: string; // auto-generated job id.

status: "failed" | "pending" | "successful";

results: AssignmentPlan[]; // array of assignments.

dispatch_order?: number[][]; //␣
→˓order in which the assignments will be dispatched to the agents.

}

AssignmentPlan {
agent_id?

→˓: number; // id of the agent that will receive the assignment.
agent_uuid?

→˓: string; // UUID of the agent that will receive the assignment.
assignment:␣

→˓any; // assignment data, usually defined by the agent vendor.
}

10 Chapter 1. The helyOS Framework

helyOS Developer Manual, Release 2.0

Note, in the inset, that the agent assignment data is nested into the field results. helyOS
core will forward the assignment to the agent indicated by agent_id or agent_uuid . The
agent will finally receive this assignment inside the following data structure:

Listing 2: Assignment received by the agent via RabbitMQ message.

AgentAssignmentCommand {

type: string = "assignment_execution";

uuid: string; // agent UUID.

body: any␣
→˓= **assignment** // the same assignment field in AssignmentPlan.

metadata:␣
→˓AssignmentMetadata; // automatic generated by helyos core.

}

AssignmentMetadata {
id: number;
yard_id: number;
status: string = "to_execute";
workk_process_

→˓id: number; // mission identification in the helyOS database.
context: any; // data from previous␣

→˓assignments belonging the same mission (workk_process_id).
}

Check also helyOS and Agents section: helyOS and Agents

1.5.3 Agent data format

The agent data is saved in the database and can be updated via the helyOS Dashboard,
or user interface, or by the agent itself via RabbitMQ

• Agent Fields

– uuid: universal unique identifier.

– available_operations: array of string defining the operations available for the agent.

– geometry: free JSON format defining the vehicle geometry.

– factsheet: JSON field added for compatibility with VDA 5050.

– x, y, z, orientations : x, y and z a numbers to specify the position of the agent. Orienta-
tions is a number array with information of the orientation of the first agent part, and of
the joint angles for trailers.

– status/state: “not_automatable” | “free” | “ready” | “busy”

– sensors: JSON field containing any data about the agent: temperature, diagnosis data,
assignment progress, velocity etc. The helyOS-native sensor data format allows the
data be visualized in the helyOS dashboard. However, following this specification is

1.5. Data Formats 11

helyOS Developer Manual, Release 2.0

optional; the field sensors can hold any arbitrary data structure. The data format is
imposed by the visualization app that the developer choose for reading it.

1.5.4 helyOS-native Sensor Data Format

The sensor data returned from an agent can have any format. The information is pub-
lished in a RabbitMQ topic, and helyOS forwards the data to user clients via WebSocket.
Therefore, the user interface must be aligned with the information and parse the sensor
values.

However, if you wish the sensor values to also be visualized on the helyOS admin dash-
board, then you must use the following format:

Fig. 2: Sensor data format

1.5.5 Mission request data format

To create a mission, the software developers must insert a row in the table of work
processes. They can use the GraphQL language or the helyOS JavaScript SDK. Here
again, helyOS does not specify the content of data.

{
yardId: number,
workProcessTypeName: string
status: string
agentIds: array of numbers
waitFreeAgent: boolean
data: {...}

}

12 Chapter 1. The helyOS Framework

helyOS Developer Manual, Release 2.0

The field data will be forwarded to all microservices linked to the mission given by the
workProcessTypeName.

The follow fields are processed by helyOS core:

• yardId: Database id of yard.

• workProcessTypeName: One of the mission names previously defined in the helyOS
dashboard (Define Missions view).

• status: ‘draft’ | “cancelling” | ‘canceled’ | ‘dispatched’ | “preparing resources” | “cal-
culating” | “executing” | “succeeded”. When creating, you can only define as ‘draft’
or “dispatched”. When updating, you can only set the status as “cancelling” or “dis-
patched”.

• agentIds: A list containing only the database ids of the agents taking part in the mission.
This agents will be reserved by helyOS core.

• waitFreeAgent (optional): Default is true. It defines if helyOS must wait all agents
listed in agentIds to report the status free before triggering the mission calculations.
Set false if you don’t need to reserve the agent and you can pile up assignments in the
agent queue. Notice that this may produce assignments calculated with outdated yard
data.

1.5. Data Formats 13

helyOS Developer Manual, Release 2.0

14 Chapter 1. The helyOS Framework

CHAPTER

TWO

HELYOS CONFIGURATION

helyOS core is the main component of the system, enclosing the business logics and the orchestration of assignments
to the agents. It can also work as the backend for web applications. helyOS can be configured by editing its database
or manually using the interactive dashboard.

2.1 Getting Started

Utilizing the Docker image provides the simplest method for running helyOS. T his image can operate locally or be
deployed via a cloud provider. For convenience, all components and environment variables should be declared within
the docker-compose.yml file

2.1.1 Environment Variables

Database connection

helyOS saves all the data in a PostgreSQL database. The database can be hosted in the same server as
helyOS or in a different server.

• PGHOST: hostname for postgres.

• PGPORT: connecting port of the postgres.

• PGDATABASE: database name of your application. A postgres instance can host multiple databases.

• PGUSER: username for postgres database.

• PGPASSWORD: password for postgres.

GraphQL Interface

The GraphQL server is the main entry point for applications or use interfaces. GraphQL requests allow to
query and mutate the data in the database. It also controls the authentitcation and authorization of apps in
helyOS.

• GQLPORT: server port to query the GraphQL server (defaults to 5000).

• JWT_SECRET: secret key to encrypt the JWT token.

15

helyOS Developer Manual, Release 2.0

RabbitMQ connection

RabbitMQ is the message broker used by helyOS to communicate with the agents. helyOS core does not
only publish and consume messages from the RabbitMQ server, but also creates the necessary accounts,
topic exchanges and queues.

• RABBITMQHOST: hostname for rabbitmq server.

• RABBITMQPORT: connecting port for AMQP clients.

• RBMQ_API_PORT: configuration port for REST API for rabbitmq server. It is used to create the rabbitmq
accounts.

• RBMQ_SSL= True or False. If True, the AMQP connection to rabbitmq server is encrypted using TSL.

• RBMQ_API_SSL= True or False. If True, the API connection to rabbitmq server encrypted (default =
RBMQ_SSL).

• CREATE_RBMQ_ACCOUNTS: True or False. helyOS automatically creates the rabbitmq accounts

• RBMQ_ADMIN_USERNAME: rabbitmq admin username (required if CREATE_RBMQ_ACCOUNTS is
True)

• RBMQ_ADMIN_PASSWORD: rabbitmq admin password (required if CREATE_RBMQ_ACCOUNTS is True)

• RBMQ_USERNAME: rabbitmq regular account username (defaults to RBMQ_ADMIN_USERNAME)

• RBMQ_PASSWORD: rabbitmq regular account password (defaults to RBMQ_ADMIN_PASSWORD)

(Optional settings)

• AGENTS_UL_EXCHANGE: exchange topic to send data to agents

• AGENTS_DL_EXCHANGE: exchange topic to receive data to agents

• CHECK_IN_QUEUE: rabbitmq queue name where agents must publish to perform check in.

• AGENT_UPDATE_QUEUE: rabbitmq queue name where high priority messages from agents are published.

helyOS settings

• ENCRYPT (not implemented yet): none | agent | helyos | helyos-agent. RSA encription betwenn helyos core and
agent. This is an additional encription to the TSL layer used by the RAbbitMQ (default = none)

• MESSAGE_RATE_LIMIT: maximum burst of number of messages per second that an agent is allowed publish
to helyOS. (default = 150)

• MESSAGE_UPDATE_LIMIT: maximum burst of number of database updates per second originated from mes-
sages publishing. E.g. status update messages. (default = 20)

• WAIT_AGENT_STATUS_PERIOD: time in seconds that helyOS waits for an agent to change to the required
status before triggering a mission. (default = 20)

(Optional settings)

• AGENT_REGISTRATION_TOKEN: It is used to authenticate the agents that were not previoulsy registered in
helyOS.

• MOCK_SERVICES: True or False. If True, the services are mocked. It is used only for automated tests purposes.
(default = False)

• TLS_REJECT_UNAUTHORIZED: True or False. If True, the TLS connection is rejected if the certificate is not
valid. (default = True)

• DEBUG: True or False. If True, the helyos core log is more verbose. (default = False)

16 Chapter 2. helyOS Configuration

helyOS Developer Manual, Release 2.0

2.1.2 Configuration Files

• helyos_private.key and helyos_public.key: RSA keys in PEM format. They are used to encrypt and sign helyOS
messages sent to agent. They are located in /etc/helyos/.ssl_keys/.

• ca_certificate.pem: This is the Certificate Authority (CA) that signed the RabbitMQ server certificate. It is
located in /etc/helyos/.ssl_keys/.

• microservices.yml: This file contains the initial configuration of the microservices. This data can be modified
later in the dashboard. It is located in /etc/helyos/config/microservices.yml.

• missions.yml: It serves as a blueprint for all available missions for the agents. It instructs the helyos core on how
to orchestrate the microservices for each mission. This data can be modified later in the dashboard. It is located
in /etc/helyos/config/missions.yml.

Optional Database Customization

Any file with the extension *.sql in the folder /etc/helyos/db_initial_data/ will be executed when the
database is created. This can be used, in principle, to pre-populate the database with data, but also to
create extra tables, views and functions that will be automatically available in the GraphQL server.

2.1.3 Example

Snippet of a docker-compose.yml

version: '3.5'
services:

database:
container_name: helyos_database
image: postgres:13
ports:

- "5432:5432"
volumes:

- postgres_data:/var/lib/postgresql/data/
networks:

- control-tower-net

helyos_core:
image: helyos_core:2
ports:

- 5002:5002 # websocket
- 5000:5000 # GraphQL
- 8080:8080 # HelyOS Dashboard

volumes:
- ./my_folder/yard_map_data.sql:/etc/helyos/db_initial_data/yard_map_data.sql
- ./my_folder/microservices.yml:/etc/helyos/config/microservices.yml
- ./my_folder/missions.yml:/etc/helyos/config/missions.yml
- ./my_folder/helyos_private.key:/etc/helyos/.ssl_keys/helyos_private.key
- ./my_folder/helyos_public.key:/etc/helyos/.ssl_keys/helyos_public.key
- ./my_folder/ca_certificate.pem:/etc/helyos/.ssl_keys/ca_certificate.pem

environment:
(continues on next page)

2.1. Getting Started 17

helyOS Developer Manual, Release 2.0

(continued from previous page)

DATABASE
- PGUSER=postgres
- PGDRIVER=QPSQL
- PGPASSWORD=${PG_PASSWORD}
- PGHOST=helyos_database
- PGDATABASE=my_application_db
- PGPORT=5432
-
RABBITMQ
- RABBITMQHOST=rabbitmq.server.com
- RABBITMQPORT=5672
- RBMQ_API_PORT=15672
- RBMQ_SSL= False
- RBMQ_API_SSL= False

RBMQ ACCOUNTS
- CREATE_RBMQ_ACCOUNTS=True #if helyOS creates the rabbitmq accounts
- RBMQ_ADMIN_USERNAME=helyos_core
- RBMQ_ADMIN_PASSWORD=${RBMQ_PASSWORD}

GRAPHQL
- GQLPORT=5000
- JWT_SECRET=${MY_SECRET_KEY}

networks:
- control-tower-net

depends_on:
- database

To run use the command: docker-compose up.

2.2 How to Configure helyOS Core as Backend

To set up helyOS as the backend for a yard automation application, the developer needs to perform the following tasks:

1. Connect helyOS to a running rabbitMQ server.

2. Access the helyOS dashboard.

3. Register the frontend applications using the “Register App” tab on the dashboard.

4. Define the yard within the “Yards” tab on the dashboard. A yard is the enclosed area that houses the autonomous
agents, such as vehicles or robots.

5. Register the agents (vehicles or robots) in the “Register Agents” dashboard tab.

6. Specify the missions applicable to your application via the dashboard’s “Define Missions” menu. Examples of
missions. “drive_from_a_to_b”, “seed_field”, etc.

7. Register microservices in the “Microservices” view. They will be used to process the mission’s request data and
produce assignment data, e.g. a trajectory path for the vehicle.

8. Create “Mission Recipes”, that is, associate each mission to one or more of the registered microservices.

By using helyOS core as a backend, front-end developers can create the user interface (e.g. Graphana
boards, web applications, etc.). They may use either helyOS JavaScript SDK (for web applications) or

18 Chapter 2. helyOS Configuration

helyOS Developer Manual, Release 2.0

the GraphQL language (for any kind of application) to create missions and access all data from the yard
and the automated vehicles.

2.3 Admin Dashboard

The helyOS dashboard is a GUI that helps developers to set up helyOS and to debug the application. The default port
to access the dashboard is 8080: http://localhost:8080.

Note: In principle, all helyOS configuration can be also done by directly writing the settings tables in the database via
GraphQL interface (or SQL scripts); such an approach would be useful for automating the initial configurations for a
deployment.

2.3.1 “Yards” View

In this view, the administrator will register the area where the automated agents (vehicles, robots) are confined, we call
it yard. The agents must be connected (checked in) to one yard to perform a mission.

• uid: It is the responsibility of the administrator to provide an unique identifier to the yard. Not to be confused
with the database id, which is automatically ascribed.

• Yard type: Any descriptive name chosen by the developer to define the characteristics of the yard (e.g farm_yard,
parking_lot, port, etc).

• Lat, Lon and Alt: Geographic coordinates of the yard center: latitude, longitude and altitude. (WGS84 reference
system)

• Metadata: User-defined JSON field containing any metadata relevant for the front-end application, e.g., map
zoom level, visible map layers. It is optional.

• Source: Each yard has one or several map objects associated with. The source of the map objects can be a direct
data input, a map microservice or a simple SQL initialization script. This field is used to specify the name of
this source. It is optional.

2.3.2 “Register Agents” View

In this view, the administrator will register the agents (vehicles, robots) and check their status. Remember that this
can also be done by any software or script via graphQL.

• uuid: It is the responsibility of the administrator to provide a unique uuid to the agent.

• Name or plate: Some friendly name to identify the agent.

• Type: Type of the agent: tractor, car, truck, etc.

• Public key: RSA public key, the correspondent private key will be saved in the agent. It is used to send encrypted
messages to the agent.

• accept assignments: This field specifies wheather the agent can receive assignments.

Note: ATTENTION: Once the agent is connected to helyOS, the next fields may be constantly updated, overwriting
any information that you input in the form.

• Position: Fields related to the position of the agent.

2.3. Admin Dashboard 19

http://localhost:8080

helyOS Developer Manual, Release 2.0

Fig. 1: Register agents view

20 Chapter 2. helyOS Configuration

helyOS Developer Manual, Release 2.0

2.3. Admin Dashboard 21

helyOS Developer Manual, Release 2.0

– yard_id : The current yard that the agent is checked into.

– x and y: Spatial coordinates of the agent: x and y.

– orientation: Angle defining agent orientation.

– orientations: In case of multi-part vehicles, one can use an array of angles: [1,0.2, . . .]

• Connection and status: Connection and work process status.

• Geometry: User-defined JSON field to specify the agent geometry information. This field can be overwritten
by the agent at any time.

Other Options for Registering Agents

Public key folder
One option to register agents is simply adding their public keys in the folder /agent-pubkeys/ using the following
convention for file name: {uuid}.key. The agent uuid and public key will be saved in the helyOS database, this
is already enough to perform the check in. Other fields can be manually or automatically updated later after the
check in.

Agent auto-registration
An agent is also able to register itself in the check-in procedure. For this, the agent should send the auto-
registration token in the check-in message. The auto registration token is configured in helyOS core by using the
environment variable AGENT_AUTO_REGISTER_TOKEN.

2.3.3 The “Define Missions” View

In this view, the developer will define the missions available for the software application. A mission represents a single
task or a group of tasks. These tasks can be related to the calculation of a path, the storing of data, handling of map
information, or a combination of all of above.

Note: Each registered mission can be seen as a new feature in the final application.

• Name: Name of the mission, that will be later used by the Client to trigger this kind of mission. E.g. “park_car”,
“seed_field”, “drive_from_A_to_B”.

• Description: Text documenting the mission goals and the used microservices.

• Maximum agents: Indicates the maximum number of agents handled by this mission.

• Settings: User-defined JSON field where the developer can pass fixed parameters to the user application or to
all microservices used in this mission. It appends the field “_settings” in the MissionRequest.

The missions trigger one or more microservices. The sequential order of microservices is defined in the Mission
Recipes view. That is, the Mission Recipes teach helyOS how to orchestrate the microservices to implement the
desired mission.

22 Chapter 2. helyOS Configuration

helyOS Developer Manual, Release 2.0

Fig. 2: Define missions view

2.3. Admin Dashboard 23

helyOS Developer Manual, Release 2.0

2.3.4 “Microservices” View

In this view, the developer registers the microservices employed in the missions. Each microservice must belong to
one of the three available domains:

Assignment domain:
microservice responses are interpreted as assignment to an agent.

Map domain:
microservice responses are interpreted as updates for the map objects.

Storage domain:
microservice does not respond with relevant data, the request is only used to push data to an external storage
server and return the request status (2XX or 4XX).

Fig. 3: Microservices view

When registering the microservice the following information is required:

• Name: Identify the microservice

• URL: Complete URL address, including http or https prefix and the port suffix.

• Domain: Choose between Assignment, Map or Storage domain.

• API key: Token used to authenticate the request call. It will be added to the request headers under the key
Authorization.

• Enable/Disable button: Enables/disables a microservice.

24 Chapter 2. helyOS Configuration

helyOS Developer Manual, Release 2.0

• Type: Any word chosen by the developer to define a class of functionality for the microservice (e.g field_planner,
driving_planner). This word is important because it will be used later to define a mission. Many microservices
can have the same Type, but only one of them can be enabled at a given time.

• Process time limit: Maximum amount of time the system will wait for the microservice result. Not to be
confused with the HTTP request timeout, used in the long poll approach. helyOS uses periodic polls spaced by
5 to 10 seconds to get the microservice results.

• Config: User-defined JSON field where the developer can pass fixed parameters on to the microservice

{
request* MissionData
config {...}
context* HelyOSContext

}

Request body sent to microservices. request is defined by the software developer according to the application. config
is set in the dashboard and context contains the yard state and the response of the previous chained microservice. The
yard state contains all the map object and agent ids and positions at the moment of the service request.

The Dummy Service

When a microservice is marked as dummy, helyOS will not send requests to any URL. Instead, helyOS will just copy
the mission request data to the result field of the microservice. This is useful in the scenario where the application does
not need to perform any calculation in microservices, e.g., if pre-defined assignment or map updates are already stored
in the client. For example, if the dummy service was registered in the assignment domain, the Client can directly send
the assignment data to the agent. If it was registered in the Map domain, the request data will be directly used to update
the map objects.

2.3.5 “Missions Recipes” View

In this view the developer will decompose the previously registered mission into microservice calls. This is done by
adding rows to the “Service Matrix” (click Add button). Each row corresponds to a step in the mission process and is
used to orchestrate the microservice calls.

• Step: Give a name to your step, using a single word or a letter. Each step within a recipe must be unique.

• Service Type: It defines which microservice will be used in the step. The step will call the enabled microser-
vice of the given “Type”. The “Type” is defined when the microservices are registered. Note that only one
microservice of a given “Type” is enabled.

• Service Response: If the microservice called in the step will produce an intermediate result in a chain of mi-
croservice calls, the option “intermediate step” should be marked. If the microservice response contains assign-
ment or the map update data ready to be executed, the option “apply step result” should be marked.

• Request Order: : The order in which the requests will be dispatched. Note that the microservice responses can
return in any order, since the services are asynchronous. If you want to ensure that the order of the microservices
responses reflects the order of request dispatches, you must set the “Step Dependencies”.

• Step Dependences: Define dependencies on other steps (microservices). For instance, if step “C” depends on
step “A” and “B”, the microservice associated with step “C” will be executed only after the responses of steps
“A” and “B” are received. The responses of steps “A” and “B” will be automatically appended in the context of
the step “C” request.

2.3. Admin Dashboard 25

helyOS Developer Manual, Release 2.0

Fig. 4: Mission recipes view

Fig. 5: Example 1. No dependencies between steps: All the microservices respond asynchronously.

26 Chapter 2. helyOS Configuration

helyOS Developer Manual, Release 2.0

Fig. 6: Example 2. Dependencies between steps: Microservices are called and respond sequentially.

2.3. Admin Dashboard 27

helyOS Developer Manual, Release 2.0

28 Chapter 2. helyOS Configuration

CHAPTER

THREE

HELYOS AND CLIENT APPS

helyOS core responds to Postgres database events. This means that the creation, update or deletion of rows in the
database trigger actions inside helyOS core. Therefore, the client applications communicate with helyOS core by
interacting with the helyOS database. This interaction uses the GraphQL language.

3.1 Application accounts

There are three types of helyOS accounts: the admin, application, and visualization accounts. They are authenticated
by token authentication.

Each account type is ascribed to a specific database role in Postgres. Therefore, the permission set will be controlled
at the database level. The admin accounts have permission to read and write all tables and execute all DB procedure
functions. The application accounts are able to read all the tables but write only on a few of them. The visualization
accounts can only read tables.

Further tuning of permissions or creation of new account types must be defined by an outer software layer for a specific
software application.

3.2 Communication

The communication between helyOS and user apps uses the GraphQL language. GraphQL is designed to make database
APIs flexible and developer friendly. As an alternative to REST, GraphQL lets developers construct requests that pull
and change data from multiple tables. GraphQL is the default language to interact with helyOS-based applications and
to access the yard state.

GraphQL queries and mutations can be tested using the GraphiQL developer interface:

http://localhost:5000/graphiql

For example, a GraphQL request to create a mission in plain python would be written as:

import requests

Login: request to the Authorization token should come here
...
#

url = "http://helyo_server:5000/graphql"
headers = {"Content-Type": "application/json; charset=utf-8",

"Authorization":"Bearer eyJhbGciOiJI... "}

(continues on next page)

29

http://localhost:5000/graphiql

helyOS Developer Manual, Release 2.0

Fig. 1: Application accounts view

Fig. 2: GraphiQL view

30 Chapter 3. helyOS and Client Apps

helyOS Developer Manual, Release 2.0

(continued from previous page)

body_data = {

"operationName": "createWorkProcess",

"query": """mutation createWorkProcess($postMessage: CreateWorkProcessInput!)
{

createWorkProcess(input: $postMessage) {
workProcess {id, status }

}
}

""",

"variables": {"postMessage" : {"clientMutationId": "not_used",
"workProcess": {

"status": "draft",
"workProcessTypeName": "driving",

"data": "{}",
"agentIds": [1]

}
}

}
}

response = requests.post(url, headers=headers, json=body_data)

Using GraphQL python libraries, this can be written more concisely. By using our helyOS- Javascript SDK helyOS-
javascript-sdk <https://github.com/FraunhoferIVI/helyOS-javascript-sdk>, the above code becomes:

import { HelyosServices } from 'helyosjs-sdk';
const helyosService = new HelyosServices('http://localhost', {socketPort:'5002',

gqlPort:'5000'});
const createNewMission = () => helyosService.workProcess.create({

status: 'draft',
workProcessTypeName: 'driving',
agentIds: [1],
data: {},

});

helyosService.login("username", "password")
.then(response => helyosService.connect())
.then(connected => createNewMission());

A more advanced example with position tracking:

import { HelyosServices } from 'helyosjs-sdk';

const helyosService = new HelyosServices('http://localhost',
{socketPort:'5002', gqlPort:'5000'});

function createNewMission() {
console.log("==> Creating drive mission...");
const trucktrixPathPlannerRequest = { x:-24945.117347564425,

(continues on next page)

3.2. Communication 31

helyOS Developer Manual, Release 2.0

(continued from previous page)

y:12894.566793421798,
anchor:"front",
orientation:1507.1,
orientations:[1507.1],
tool_id:1,
_settings:{},

};

return helyosService.workProcess.create({
agentIds: [1],
yardId: 1,
workProcessTypeName: 'driving',
data: trucktrixPathPlannerRequest as any,
status: 'dispatched',// status = 'draft' will save the mission

// but no dispatch it.
});

}

function trackVehicle() {
console.log("==> Tracking agent position and assignment status...\n");

helyosService.socket.on('new_agent_poses',(updates: any)=>{
const agentData = updates.filter((agent:any) => agent.agentId === 1);

console.log(agentData);
});

helyosService.socket.on('change_work_processes',(updates:any)=>{
const wprocessStatus = updates.map((wprocess:any) => wprocess.status);

console.log(wprocessStatus);
if (wprocessStatus.includes('succeeded') || wprocessStatus.includes('failed')) {

process.exit();
}

});

}

helyosService.login("username", "password")
.then(response => helyosService.connect())
.then(connected => {

console.log("==> Connected to helyOS")
createNewMission()
.then(() => trackVehicle())

});

32 Chapter 3. helyOS and Client Apps

helyOS Developer Manual, Release 2.0

3.3 Requesting Missions

To trigger a mission in helyOS core, a new instance of the WorkProcess must be created. The WorkProcess is a generic
process entity that can be used to create any kind of mission.

The WorkProcess has the following fields:

• id: The unique identifier of the mission.

• status: The status of the mission: draft, dispatched, executing, succeeded, failed, canceling, canceled.

• workProcessTypeName: The type of the mission. The type of the mission is defined by the WorkProcessType.

• data: The data of the mission. The data of the mission is a JSON object that contains the parameters of the
mission.

• agentIds: The agents that are assigned to the mission. The agents are defined by the Agent type.

To ensure that the mission is executed correctly, the WorkProcess must be created with the following status:

• draft: The mission is created but not dispatched. This state is useful to save the mission in the database and
make modifications before dispatching, or to add it to a MissionQueue. To dispatch the mission, the status must
be changed to dispatched.

• dispatched: As soon as a WorkProcess is created with the status dispatched, or the status of a WorkProcess is
changed to dispatched, helyOS will trigger a series of events to execute the mission. These events include the
reservation of the agents, the calls to relevant microservices, and finally the dispatch of assignments to the agents.

3.4 Handling the Mission Execution

While the mission assignments are being actively executed, the status of the WorkProcess will be executing. If one of
the mission assignments fails, the status of the WorkProcess will be failed. If all the mission assignments succeed, the
status of the WorkProcess will be succeeded.

If the client application wants to cancel the mission, the status of the WorkProcess must be changed to canceling. This
will trigger the canceling of all pending microservice requests, the canceling of all running and pending assignments,
and it will signal the release of all agents from the mission. Only after the succession of all these events, the WorkProcess
will be automatically changed to canceled.

Reguarding the state flow of the WorkProcess, the client application should not forcefully change the status of the
WorkProcess to executing, succeeded, failed, or canceled. Usually we have the following state flow:

• The dispatched is automatically changed to executing or failed.

• The executing is automatically changed to succeeded or failed.

• The canceling is automatically changed to canceled.

Note: In principle, you can cancel an individual assignment by changing is status to canceling, this will result in a
cancel instant action sent directly to the agent. However, this may lead to an inconsitent state of the mission, therefore
is recommended to cancel the mission, as described above, rather than cancel individual mission assignments.

3.3. Requesting Missions 33

helyOS Developer Manual, Release 2.0

34 Chapter 3. helyOS and Client Apps

CHAPTER

FOUR

HELYOS AND MICROSERVICES

The communication between helyOS and microservices is configured in the helyOS dashboard. Every time helyOS
receives a mission request, it makes calls to the relevant microservices. If the microservice results are not immediately
available, helyOS will poll the results in subsequent periodic calls. The microservices must serve endpoints according
to the helyOS definitions for microservices APIs.

4.1 Missions Request: from App to helyOS core

In order to initiate a mission, the applications are required to add a new entry into the work processes table
of helyOS Postgres database. This can be accomplished using either the GraphQL language or its Javascript
wrapper, helyosjs-sdk. The following example shows how to create a mission using the Javascript SDK.

Listing 1: Example of mission creation using the Javascript SDK. The
mission type is “driving” and it employs the agent with id=1.

import { HelyosServices } from 'helyosjs-sdk';
import { token } from './token';

const backendUrl = 'http://localhost';
const socketPort = 5002;
const gqlPort = 5000;

const main = async () => {
const hellosService = new HelyosServices(backendUrl, {socketPort, gqlPort}

→˓);
hellosService.token = token;
await hellosService.connect()
hellosService.workProcess.create({

yardId: 1,
workProcessTypeName: 'driving',
status: 'dispatched',
agentIds: [1],
waitFreeAgent: true,
data: { ... } // user-defined JSON field

});
}

main();

Once the workProcess (mission) is created, the following fields are processed by helyOS core:

35

helyOS Developer Manual, Release 2.0

• yardId: Database id of yard.

• workProcessTypeName: One of the mission names previously defined in the helyOS dashboard
(Missions Receipe view).

• status: ‘draft’ | “cancelling” | ‘canceled’ | “dispatched” | “preparing resources” | “calculating” | “exe-
cuting” | “succeeded”. When creating, you can only define as ‘draft’ or “dispatched”. Once the status
is set as ‘dispatched’, the helyOS will prompt the execution of the mission. When updating, you can
only set the status as “cancelling” or “dispatched”.

• agentIds: A list containing only the database ids of the agents taking part in the mission. This agents
will be reserved by helyOS core.

The following field is not processed by helyOS core, and it is forwarded to the microservice(s):

• data: The mission data, a user-defined JSON field which is specific to the application. This field will
be forwarded to the microservices. The microservice will receive the mission data from the client
software along with the yard state from helyOS core (helyOSContext). The developer must therefore
add here any necessary information that is not present in the yard state. For example, pointing out
the agent Id that will receive the assignment, or the ordering that the assignment must be executed.

The following field is optional:

• waitFreeAgent (optional): Default is true. It defines whether helyOS must wait for all agents listed
in agentIds to report their status as “free” before triggering the mission calculations. Set false if you
don’t need to reserve the agent and you can pile up assignments in the agent queue. Notice that this
may produce assignments calculated with outdated yard context data.

4.2 Service Requests: from helyOS to Microservices

Once the mission is triggered, helyOS will dispatch HTTP POST requests to the related microservices; one
mission can trigger the request of one or many microservices. The order in which the microservices are
called is pre-configured as mission steps using the mission recipe editor in the helyOS dashboard; each
step is associated to one microservice call.

All these requests contain the field request with the mission data, and the field context with the yard, agents
and mission-related data. As default, the request field contains the user-defined workProcess.data.

Listing 2: Requesta data send from helyOS to the microservice.

HelyOSRequest {
request: any; // mission input data from the application

context: HelyOSContext;

config?: any; // optional configuration data defined in the helyOS␣
→˓dashboard.

}

The context contains all information relevant at the moment of the dispatch, including mission orch-
estation data, yard data and calculation results from previous steps from other microservices in con-
text.dependencies.

36 Chapter 4. helyOS and Microservices

helyOS Developer Manual, Release 2.0

Listing 3: Context data autommatically generated by helyOS and sent to
the microservice.

HelyOSContext {

agents: AgentModel[]; // arrray of agents relevant to the mission.

map: {
id: number,
origin: { lat: number, long: number}
map_objects : MapObjectsModel[]; // array of all map objects␣

→˓in the yard.
};

orchestation: {
current_step: string, // name of the current step in the␣

→˓mission.
next_step: string[], // names of the subsequent steps in the␣

→˓mission.
};

dependencies: {
step: string,
requestUid: string,
response: any

}[]; // array of data responses from microservice of previous steps.

}

The AgentModel and MapObjectsModel are defined here: Models Description.

4.3 Service Response: from Microservices to helyOS

In general the microservice response is a JSON object with the following structure:

Listing 4: Response data structure as defined in the Assignment planner
API.

HelyOSMicroserviceResponse {
request_id?: string; // generated job id. Can be used to poll results␣

→˓from long running jobs.

status: "failed" | "pending" | "successful"; .

results: AssignmentPlan[] | MapUpdate | any;

dispatch_order?: number[][];

orchestration?: {
nex_step_request: [step: string]: any; // input data to be sent␣

(continues on next page)

4.3. Service Response: from Microservices to helyOS 37

helyOS Developer Manual, Release 2.0

(continued from previous page)

→˓to the next microservice(s).
}

}

• request_id: Service generated job id.

• status can be “failed” | “pending” | “successful”. While “pending” is returned, helyOS will poll the
microservice for results using the request_id.

• results can be an array of assignments or a map update, depending on the domain where the mi-
croservice was registered. If the microservice is perform intermediate calculations, the results can
be any other data structure.

• dispatch_order is an array of the element indexes of the results array. In case of Assignment plan-
ners, the order of the indexes defines the order in which the corresponding assignment in the results
array will be dispatched to the agent.

• orchestration (optional) is a field designed to transmit data to the subsequent step in the mission. It
is utilized when the input data for the following microservice (the field request) needs to be different
from the initial mission input data (the field workProcess.data).

Example of orchestration field.

Supose that a mission is composed of three steps: 1:”plan_plowing”, 2:(“charging” and “report_external”)
and 3:”driving”.

The microservice of the first step will calculate the path and use the orchestation field to request the charging
microservice to supply enough energy for the vehicle run the entire path length.

Listing 5: Example of response using the orchestration field.

{
request_id: "1234",
status: "successful",
results: [

{
agent_id: 23,
assignment: {...}

}
(continues on next page)

38 Chapter 4. helyOS and Microservices

helyOS Developer Manual, Release 2.0

(continued from previous page)

],

orchestration: {
nex_step_request: {
"charging": {

agent_id: 23,
needed_autonomy: "500 m"

},
"report_external": {

report_type: "charge_report",
report_data: {...}

}
}

}
}

The microservices of the next step in the mission will receive the following input data in their request field:

• For the “charging” microservice: request = {agent_id: 23, needed_autonomy: “500 m”}

• For the “report_external” microservice: request = { “report_type”: “charge_report”, report_data: {. . . }}

4.3.1 Assignment Creation

Assignments are created by microservices in the Assignment Planner domain. A microservice can create one or more
assignments per mission, and can define the dispatch order to agents.

Listing 6: Response data to create agent assignments.

HelyOSMicroserviceResponse {

request_id?: string; // generated job id. Can be used to poll results␣
→˓from long running jobs.

status: "failed" | "pending" | "successful"; .

results: AssignmentPlan[]; // array of assignments.

dispatch_order?: number[][]; // order in which the assignments will be␣
→˓dispatched to the agents.

(continues on next page)

4.3. Service Response: from Microservices to helyOS 39

helyOS Developer Manual, Release 2.0

(continued from previous page)

orchestration?: {
nex_step_request: [step: string]: any;
}

}

AssignmentPlan {
agent_id?: number; // id of the agent that will receive the assignment.
agent_uuid?: string; // UUID of the agent that will receive the assignment.
assignment: any; // assignment data, usually defined by the agent vendor.

}

This microservice response data structure, as defined before, will contains the assignment data in the results field.

• results: it is an array of assignments where each assignment is ascribed to a agent id.

• dispatch_order: When assignments must be executed sequentially, this variable is defined as an array of the
element indexes of the results array. The order of the indexes defines the order in which the corresponding
assignment will be dispatched to the agent. E.g., [[0], [1,2], [3,4,5]] means that the first assignment will be
dispatched first, then the second and third assignments will be dispatched simultaneously, and finally the fourth,
fifth and sixth assignments will be dispatched simultaneously.

In the AssignmentPlan, the assignment field is a user-defined JSON field that contains the data necessary for the agent
to execute the assignment. The agent that will receive the assignment must be identified either by the agent_id or by
the agent_uuid field. The agent_id is the database id of the agent, and the agent_uuid is the UUID of the agent.

Note:

Note: You cannot send more than one mission at once to a same agent. However, you can SEND SEVERAL
ASSIGNMENTS to a same agent! For this, add the assignments into the results array with the same agent_id.

Use the dispatch_order field to let helyOS to sequentially dispatch the assignments to a same agent. Otherwise the
assignments will be sent simultaneously; in this case, the agent would need to be smart enough to consume and
handle the assignments in the correct order.

4.3.2 Mission Sequence

The following figure illustrates the mission request process from the point of view of the Client application.

1. The client logs on to helyOS and receives an authentication token, which will be used for subsequent requests.

2. The client makes the mission request and helyOS core reserves all agents necessary for that mission.

3. helyOS calls the microservices to calculate the assignment data for the requested mission (which microservices
are called and the order in which they are called is pre-configured for each mission type).

4. helyOS receives the assignment data from the microservices and distributes them to the agents using RabbitMQ.

5. When the agents have finished their assignment, they inform helyOS. helyOS may release the agent (reserved =
False).

40 Chapter 4. helyOS and Microservices

helyOS Developer Manual, Release 2.0

Fig. 1: The process of mission creation from client
4.3. Service Response: from Microservices to helyOS 41

helyOS Developer Manual, Release 2.0

4.4 Models Description

Listing 7: Requesta data send from helyOS to the microservice.

HelyOSContext {
agents: AgentModel[]; // arrray of agents relevant to the mission.

map: {
id: number,
origin: { lat: number, long: number}
map_objects : MapObjectsModel[]; // array of all map objects in the␣

→˓yard.
};

orchestation: {
current_step: string, // name of the current step in the␣

→˓mission.
next_step: string, // name of the next step in the␣

→˓mission.
};

dependencies: { step: string,
requestUid: string,
response: any

}[]; // array of data responses from microservice of␣
→˓previous steps.

}

Listing 8: Agent and map object models.

AgentModel {
id: number;
uuid: string;
name: string;
agent_type: string;
agent_class: "vehicle" | "assistant" | "tool" | "charge_station";
pose: { x: number, y: number, z:number, orientations: number[] };
status: "free" | "busy" | "ready" | "not_automatable";
connection_status: "off-line" | "on-line";
public_key: string;

data_format: string;
resources: any;
geometry: any
sensors: any;

interconnections: {uuid: string, agent_type: string}[];
}

MapObjectsModel {
(continues on next page)

42 Chapter 4. helyOS and Microservices

helyOS Developer Manual, Release 2.0

(continued from previous page)

id: number;
name: string;
type: string;
data_format: string;
data: any;
metadata: any;

}

In general the microservice response is a JSON object with the following structure:

Listing 9: Response data structure as defined in the Assignment planner
API.

HelyOSMicroserviceResponse {
request_id?: string; // generated job id. Can be used to poll results␣

→˓from long running jobs.

status: "failed" | "pending" | "successful"; .

results: AssignmentPlan[] | MapUpdate | any;

dispatch_order?: number[][];

orchestration?: {
nex_step_request: [step: string]: any; // input data to be sent␣

→˓to the next microservice(s).
}

}

4.4. Models Description 43

helyOS Developer Manual, Release 2.0

44 Chapter 4. helyOS and Microservices

CHAPTER

FIVE

HELYOS AND AGENTS

Communication between helyOS and agents is conveyed by the RabbitMQ message broker. Most of the messages
are sent and received using topic exchanges. The agent identification number (uuid) must be registered in the helyOS
database. This can be done via dashboard or via a direct GraphQL request, or, in special cases, automatically during
the “check-in” process via a registration token.

5.1 Exchange, Routing-keys and Queues in RabbitMQ

Fig. 1: helyOS and rabbitMQ

Thanks to the RabbitMQ routing features, any RabbitMQ client subscribing to the topic exchange agent_ul can get the
messages filtered by routing-keys.

The agents will address their messages to the following routing-keys:

• agent.{uuid}.checkin : used only for check-in data.

• agent.{uuid}.update : messages related to updates of agent properties. e.g., vehicle name, geometry data.

45

helyOS Developer Manual, Release 2.0

• agent.{uuid}.visualization : messages reporting the positioning and sensor data.

• agent.{uuid}.state : messages reporting the assignment status and agent state.

• agent.{uuid}.mission_req : messages to request missions from helyOS.

• agent.{uuid}.factsheet : (included for compatibility with VDA5050) messages to report geometry.

The agents will receive messages from the following routing-keys:

• agent.{uuid}.assignment or agent.{uuid}.order: receive assignments.

• agent.{uuid}.instantActions : receive instant action commands from helyOS core or any other RabbitMQ client.

Routing-keys can be converted to topics for MQTT clients. Check the table below.

All messages exchanged between helyOS and the agents include the following common fields:

• type: string, ex: “checkin”, “assignment”, “cancel”, etc..

• uuid: string, the identification of the agent the message is about.

• body: JSON object.

The additional field metadata is present for some messages.

The body field will be specific for each message type. The easiest way to communicate to helyOS is to use the agent
SDK connector methods: publish_general_updates, publish_states and publish_sensors.

Ref: Documentation and Examples

5.2 Code Examples

You can connect an agent to helyOS via any RabbitMQ or MQTT client using Python, Java, .Net, Ruby, JavaScript,
Go, C and C++. Here, we bring some examples of connection using Pyhton clients.

AMQP

import pika
from my_agent import sensor_json_str, properties_json_str, states_json_str, mission_
→˓request_json_str
from my_callbacks import ia_callback, as_callback

connect to RabbitMQ
hostname ='rabbitmq.server.de'
username = "134069fc5-fdgs-434b-b87e-f19c5435113"
UPLINK = "xchange_helyos.agents.ul"; DOWNLINK = "xchange_helyos.agents.dl";

credentials = pika.PlainCredentials(username, 'secret_passwd')
sender_validation = pika.BasicProperties(user_id = username)
parameters = pika.ConnectionParameters(hostname, 5672,credentials=credentials)
connection = pika.BlockingConnection(parameters)
channel = connection.channel()

publish sensors and position - can be performed up to 1000 Hz
channel.basic_publish(UPLINK,"agent.134069fc5-fdgs-434b-b87e-f19c5435113.visualization",␣

(continues on next page)

46 Chapter 5. helyOS and Agents

https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/apidocs/helyos_agent_sdk.connector.html#module-helyos_agent_sdk.connector
https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/examples/index.html

helyOS Developer Manual, Release 2.0

5.2. Code Examples 47

helyOS Developer Manual, Release 2.0

(continued from previous page)

→˓sensor_json_str, sender_validation)

update propeties as geometry and position - can be performed up to 10 Hz
channel.basic_publish(UPLINK,"agent.134069fc5-fdgs-434b-b87e-f19c5435113.update",␣
→˓properties_json_str, sender_validation)

update agent and assignment status - must be performed immediately when the status␣
→˓change. Up to 2 Hz
channel.basic_publish(UPLINK,"agent.134069fc5-fdgs-434b-b87e-f19c5435113.state", states_
→˓json_str ,sender_validation)

request a mission to helyOS
channel.basic_publish(UPLINK,"agent.134069fc5-fdgs-434b-b87e-f19c5435113.mission",␣
→˓mission_request_json_str ,sender_validation)

receive instant actions
channel.queue_declare(queue='ia_queue')
channel.queue_bind('ia_queue', DOWNLINK,"agent.134069fc5-fdgs-434b-b87e-f19c5435113.
→˓instantActions")
channel.basic_consume('ia_queue', auto_ack=True, on_message_callback=ia_callback)

receive order or assignments
channel.queue_declare(queue='as_queue')
channel.queue_bind('as_queue', DOWNLINK, "agent.134069fc5-fdgs-434b-b87e-f19c5435113.
→˓assignment") # ororder
channel.basic_consume('as_queue', auto_ack=True, on_message_callback=as_callback)

channel.start_consuming()

Tapping into the agent’s data stream

import pika, json

connect to RabbitMQ
hostname ='rabbitmq.server.de'
username = "assistant-3432-434b-b87e-ds3245323"
UPLINK = "xchange_helyos.agents.ul"

credentials = pika.PlainCredentials(username, 'secret_passwd')
parameters = pika.ConnectionParameters(hostname, 5672,credentials=credentials)
connection = pika.BlockingConnection(parameters)
channel = connection.channel()

def parse_any_helyos_agent_message(raw_str):
get message string
object = json.loads(raw_str)
message_str = object['message']
message_signature = object['signature']
parse message string
message = json.loads(message_str)
print(f"message type: {message['type']}")
print(f"message uuid: {message['uuid']}")

(continues on next page)

48 Chapter 5. helyOS and Agents

helyOS Developer Manual, Release 2.0

(continued from previous page)

print(f"message body: {message['body']}")
print(f"message metadata: {message.get('metadata', None)}")

Tapping into the agent's data stream - VISUALIZATION
def tap_visualization_callback(ch, method, properties, raw_str):

print("visualization data received")
parse_any_helyos_agent_message(raw_str)

channel.queue_declare(queue='visualization_queue')
channel.queue_bind('visualization_queue', UPLINK, "agent.*.visualization")
channel.basic_consume('visualization_queue', auto_ack=True, on_message_callback=tap_
→˓visualization_callback)

Tapping into the agent's data stream - STATE
def tap_state_callback(ch, method, properties, raw_str):

print("state data received")
parse_any_helyos_agent_message(raw_str)

channel.queue_declare(queue='state_queue')
channel.queue_bind('state_queue', UPLINK, "agent.*.state")
channel.basic_consume('state_queue', auto_ack=True, on_message_callback=tap_state_
→˓callback)

Tapping into the agent's data stream - UPDATE
def tap_update_callback(ch, method, properties, raw_str):

print("update data received")
parse_any_helyos_agent_message(raw_str)

channel.queue_declare(queue='update_queue')
channel.queue_bind('update_queue', UPLINK, "agent.*.update")
channel.basic_consume('update_queue', auto_ack=True, on_message_callback=tap_update_
→˓callback)

channel.start_consuming()

MQTT

import paho.mqtt.client as mqtt
connect to RabbitMQ
hostname ='rabbitmq.server.de'
username = "134069fc5-fdgs-434b-b87e-f19c5435113"

client = mqtt.Client()
client.username_pw_set(username, 'secret_passwd')
client.connect(rabbitmq_host, 1886)

publish sensors and position - can be performed up to 1000 Hz
client.publish("agent/134069fc5-fdgs-434b-b87e-f19c5435113/visualization", sensor_json)

update propeties as geometry and position - can be performed up to 10 Hz
client.publish("agent/134069fc5-fdgs-434b-b87e-f19c5435113/update", propeties_json)

(continues on next page)

5.2. Code Examples 49

helyOS Developer Manual, Release 2.0

(continued from previous page)

update agent and assignment status - must be performed immediately when the status␣
→˓change. Up to 2 Hz
client.publish("agent/134069fc5-fdgs-434b-b87e-f19c5435113/state", agent_assign_states_
→˓json)

receive instant actions
client.subscribe("agent/134069fc5-fdgs-434b-b87e-f19c5435113/instantActions")
client.message_callback_add("agent/134069fc5-fdgs-434b-b87e-f19c5435113/instantActions",
→˓ia_callback)

receive order or assignments
client.subscribe("agent/134069fc5-fdgs-434b-b87e-f19c5435113/assignment") # or ../order
client.message_callback_add("agent/134069fc5-fdgs-434b-b87e-f19c5435113/assignment",as_
→˓callback)

client.loop_start()

These codes can be simplified by using the helyos-agent-sdk. See examples also for AMQP and MQTT agents: https:
//fraunhoferivi.github.io/helyOS-agent-sdk/build/html/examples/index.html

5.3 Check in agent in helyOS

To receive assignments from helyOS, the agent must perform a procedure called “check-in”.

In the check-in procedure, the agent will

• Connect to RabbitMQ and send its identification data.

• If the agent is connected as anonymous and possess the helyOS registration token, a new username and password
will be automatically created.

• Create a temporary queue to receive the check-in response.

Listing 1: Check-in data sent by the agent to helyOS core. The symbol
(?) means optional.

CheckinCommandMessage {
type: "checkin";

uuid: string;

body: {
yard_uid: string; // yard the agent is checking in.
status: string;
pose: { x:number, y:number, z:number, orientations:number[]};
type?: string;
name?: string;
data_format?: string;

(continues on next page)

50 Chapter 5. helyOS and Agents

https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/examples/index.html
https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/examples/index.html

helyOS Developer Manual, Release 2.0

(continued from previous page)

public_key?: string;
geometry?: AnyDataFormat;
factsheet?: AnyDataFormat

}

}

• geometry: JSON informing the physical geometry data of the vehicle.

• yard_uid: Unique identifier of the yard as registered in the dashboard.

helyOS will respond with the following data:

Listing 2: Check-in data sent by helyOS core to agent. The symbol (?)
means optional.

CheckinResponseMessage {
type: "checkin";

uuid: string;

body: {
agentId: number; // agent database id number
yard_uid: string; // yard the agent is checking in.
status: string;
map: { uid:string,

origin:{lat:number, lon:number, alt:number},
map_objects: MapObjects[]

};
rbmq_username: string;
response_code: string;
helyos_public_key: string;
ca_certificate: string; // RabbitMQ server certificate for SSL connection
rbmq_password?: string; // When agent account does not exist in the␣

→˓RabbitMQ server.
password_encrypted? boolean

}

}

• type = “check in”.

• map: JSON with the map information from yard.

• rbmq_username: RabbitMQ account to be used by this agent.

• rbmq_password: RabbitMQ password, only used for anonymous check-in.

• password_encrypted: If true, the rbmq_password field is encrypted with the agent public key.

Check in using python code:

def checkin_pseudo_code(username, password):
step 1 - connect
temporary_connection = connect_rabbitmq(rbmq_host, username, password)
gest_channel = temporary_connection.channel()

(continues on next page)

5.3. Check in agent in helyOS 51

helyOS Developer Manual, Release 2.0

(continued from previous page)

step 2 - create a queue only to receive the check-in response
checkin_response_queue = gest_channel.queue_declare(queue="")

step 3 - publish the check-in request
uuid = "y4df7293-5aab-46e2-bf6b"
publish_in_checkin_exchange_topic(yard_id=1,

uuid: uuid,
routing_key: f"agent-{uuid}-checkin,
status="free",
agent_metadata=data,
reply_to= checkin_response_queue)

step 4 - start to consume checkin_response_queue and get the response data
if username == 'anonymous':

new_username, new_password, yard_data = listen_checkin_response(checkin_response_
→˓queue)

helyos_connection = connect_rabbitmq(rbmq_host, new_username, new_password)
else:

_, _, yard_data = listen_checkin_response(checkin_response_queue)
helyos_connection = connect_rabbitmq(rbmq_host, username, password)

return helyos_connection, yard_data

The similar code using helyos-agent-sdk python package:

from helyos_agent_sdk import HelyOSClient, AgentConnector

helyOS_client = HelyOSClient(rbmq_host,rbmq_port, uuid="y4df7293-5aab-46e2-bf6b")
if username!='anonymous':

helyos_client.connect(username, password)
helyOS_client.perform_checkin(yard_uid='1', agent_data=data, status="free")
helyOS_client.get_checkin_result()

helyos_connection = heylOS_client.connection

The helyOS-agent-sdk has many other methods to send and receive data from helyOS core in the correct data format.
Check the documentation at https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/index.html.

52 Chapter 5. helyOS and Agents

https://fraunhoferivi.github.io/helyOS-agent-sdk/build/html/index.html

helyOS Developer Manual, Release 2.0

5.4 Data Flow between helyOS and Agents

Only if the agent’s uuid is registered in the helyOS database, the agent can exchange messages with helyOS to report
its status and to perform the assignments.

Note that before receiving any assignment, the agent must be reserved for the assignment mission. That is, the agent
changes the status from “free” to “ready” (i.e., ready for the mission) upon helyOS Reserve request. Once the agent
finishes the assignment, the agent will not set its status from “busy” to “free”, but to “ready”. This is because helyOS
may sent him a second assignment belonging to the same mission. For this reason, the agent must wait the “Release”
signal from helyOS to set itself “free”.

5.5 helyOS Reserves Agent for Mission

Before processing a mission request, helyOS core will reserve the required agent(s). This is done via the routing key,
agent.{uiid}.instantActions. helyOS requests the agent to be in “ready” status (status=”ready” and reserved=True).
During the assignment, the agent’s status changes to “busy”. After the assignment is complete, the agent updates its
status from “busy” to “ready”. At this point, helyOS may release the agent, depending on the presence of any further
assignments in that mission. The release message is also delivered via instant actions.

The agent reservation is important because:

(i) Mission calculations can require considerable computational power and take several seconds. Therefore, the
agent must remain available during this period and not be used by other tasks.

(ii) In some missions, multiple agents may need to perform sequential assignments. In such cases, one agent must
be reserved to wait for the completion of assignments from another agent.

(iii) Some missions require unique tools or devices that may not be present at the required agent. Thus, ensuring the
readiness of both the agent and its hardware for the specific assignment is important.

(iv) In the interest of security, heavy agents, even those set to automatable mode, should communicate their upcoming
assignment visually or soundly to their surroundings. This feature allows anyone nearby to abort the assignment
before it starts if deemed necessary.

However, in some scenarios, agents should not be blocked waiting for a mission calculation. Instead, they should
either fail the mission if they become suddenly unavailable after the calculation is done, or queue the assignment to be
executed later. For those scenarios, the developer must uncheck the option Acknowledge reservation on the Register
Agent tab in the dashboard.

5.6 helyOS Sends Assignment to Agent

As earlier mentioned, the assignments usually originated from the microservices. That is, the microservices translate
the requested mission in assignments: Assignment. The microservices return the assignments to helyOS core, and
helyOS distributes them to the agents. This is done via the routing key agent.{uiid}.assignments.

If the option Acknowledge reservation is checked, helyOS will send an assignment to the agent only if the agent status
is “ready”.

5.4. Data Flow between helyOS and Agents 53

helyOS Developer Manual, Release 2.0

Fig. 2: The process of agents receiving mission assignments
54 Chapter 5. helyOS and Agents

helyOS Developer Manual, Release 2.0

Listing 3: Assignment object data format. The field metadata is auto-
matically generated by helyOS core.

AssignmentCommandMessage {
type: "assignment_execution";

uuid: string;

body: AnyDataFormat;

metadata: {
id: number, // assignment id.
workprocess_id: number, // mission id.
yard_id: number,
status: string,
context?: { dependencies: PreviousAssignments[]}

}

}

An easy-to-implement security mechanism is to check the identity of the assignment sender. This is an embedded
feature of RabbitMQ. For example, if you want your agent to only execute assignments from helyOS core, you can
filter assignments originated from the RabbitMQ account “helyos_core”.

5.7 Agent Requests a Mission

In addition to client apps, agents can also request missions from helyOS core. This feature is useful for situations such
as the following:

• A smart camera identify a new obstacle and requests a mission to update helyOS map by sending the position of
a new obstacle.

• A tractor requests a mission to ask assistance of another agent for executing a task.

• A truck finds itself obstructed by a fixed obstacle, the truck requests a mission from helyOS to calculate a path
away from this deadlock situation, or to contact a teleoperated driving service.

5.7. Agent Requests a Mission 55

helyOS Developer Manual, Release 2.0

56 Chapter 5. helyOS and Agents

CHAPTER

SIX

APPLICATIONS IN YARD AUTOMATION

helyOS core responds to database events. That is, the creation, update or delete of rows in the database tables trigger
actions inside the helyOS core. The Client Applications communicate with helyOS core by interacting with the helyOS
database using the GraphQL language. The microservices attached to helyOS core will provide the specific features to
the application.

6.1 Implementation of a Yard Automation Application

helyOS core is a single NodeJS application serving ports 5000, 5002 and 8080 for the GraphQL connection, the web
socket connection and the dashboard GUI respectively. helyOS connects as a client to Postgres and RabbitMQ. All
parameters for these connections are passed as environment variables.

Since helyOS is containerized, it is easy to launch a helyOS application in the cloud. Users can either run the container
inside a single Linux or Windows computer of a cloud provider, or they can implement helyOS in a serverless approach
using available cloud products with horizontal auto scaling.

Fig. 1: helyOS yard automation application

57

helyOS Developer Manual, Release 2.0

6.1.1 What is possible in the helyOS framework?

The helyOS framework gives developers many options to solve yard automation problems. To better use this flexibility,
the helyOS framework suggests a template to organize the data flow and the responsibilities of each domain. Following
this template will lead to a more robust and maintainable software architecture.

58 Chapter 6. Applications in yard automation

helyOS Developer Manual, Release 2.0

6.2 Examples of missions using helyOS

A. Application requests a map update.

B. Application requests truck to drive from A to B using an online path planner.

C. Application requests truck to drive from A to B using an online path planner but employing the most recent map
data in the path calculation.

D. Application requests robot to take pictures and update the map objects.

6.2. Examples of missions using helyOS 59

helyOS Developer Manual, Release 2.0

60 Chapter 6. Applications in yard automation

helyOS Developer Manual, Release 2.0

6.2. Examples of missions using helyOS 61

helyOS Developer Manual, Release 2.0

62 Chapter 6. Applications in yard automation

CHAPTER

SEVEN

FAQ

Frequently asked questions.

7.1 Why not code everything in a single backend? Why do I need
helyOS?

Because a monolithic solution for real-world yard automation is unwise from the technical and managerial point of
view. A yard automation application integrates several technologies and are developed by interdisciplinary teams. The
best way to handle such a project is by using microservice architectures.

Please read: Why you should use helyOS.

7.2 What are microservices?

Microservices - also known as the microservice architecture - is an architectural style that structures an application
as a collection of services that are loosely coupled, organized around business capabilities and owned by a small
team. The microservice architecture enables an organization to deliver large, complex applications rapidly, reliably
and sustainably.

In the helyOS framework, microservices are used to implement path planners, data parsers, map servers, storage
services, etc. They are grouped and arranged according to the mission requirements.

7.3 What does it means that “helyOS orchestrates microservices”?

It means that as soon helyOS receives a mission request, helyOS will:

• check the health of the services used by the mission,

• sequentially dispatch the request data to these services,

• periodically pool the server response if it is not immediately available,

• forward the response from one service to the next one (if required),

• deliver the service response to the agents

63

helyOS Developer Manual, Release 2.0

7.4 What does it means that “helyOS orchestrates assignments”?

It means that as soon helyOS receives a mission request, helyOS will:

• check the availability of the required agents,

• send a signal to reserve the agents for the mission,

• sequentially send the mission assignments to the agents as specified in the mission.

• release the agents if there is no more assignments to be executed in the mission or if the mission was canceled.

7.5 Can helyOS calculate trajectory paths?

No. helyOS connects to a server that calculates paths. helyOS takes care of delivering the calculated paths to the “free”
agents. You need only to register the server URL as microservice in the helyOS dashboard.

7.6 Can I send several missions at once to one automated vehicle?

You can create one mission with many assignments to one automated vehicle.

7.7 What is the difference between mission and assignment?

A yard automation application is defined in terms of its available missions. To complete a mission, agents must perform
one or more assignments. helyOS receives the request of a mission and dispatches assignments to one or more agents.

7.8 What is the data format for the agent sensors?

helyOS uses JSON formats. You are free to decide the data structure according to your frontend. If you have no idea,
just use the helyOS-native format and you will be safe:

7.9 I want to use an online server for path calculation (or map infor-
mation) which has its own API. How can I integrate with helyOS?

You need to make a small service to convert from the original API to the helyOS API and register it as a microservice
in the dashboard. Since the helyOS API is extremely simple, this can be done with a few lines of code.

64 Chapter 7. FAQ

helyOS Developer Manual, Release 2.0

Fig. 1: helyOS-native format for agent sensor data

7.9. I want to use an online server for path calculation (or map information) which has its own API.
How can I integrate with helyOS?

65

helyOS Developer Manual, Release 2.0

7.10 What is the difference between helyOS and Automation App?

helyOS is a software framework used to facilitate the creation of control tower software for different applications like
e.g., agriculture, logistics centers and harbors.

Automation App is proprietary software application used as a frontend tool to prototype projects in logistic centers.
Automation App uses helyOS as backend.

66 Chapter 7. FAQ

	The helyOS Framework
	Overview
	Why you should use helyOS

	Definitions
	Message broker
	RabbitMQ
	Agent
	helyOS core
	Assignment
	Mission
	Instant Actions
	Microservices
	Autonomous domain (also automaton domain)
	Yard
	Map object
	Agent check in
	Difference between mission and assignment
	What is possible in helyOS framework?

	How It works
	Software Components
	Control Strategy
	Data Formats
	Communication

	Software Components
	helyOS core
	helyOS JavaScript SDK
	helyOS Agent SDK

	Data Formats
	Yard and map formats
	Assignment data format
	Agent data format
	helyOS-native Sensor Data Format
	Mission request data format

	helyOS Configuration
	Getting Started
	Environment Variables
	Database connection
	GraphQL Interface
	RabbitMQ connection
	helyOS settings

	Configuration Files
	Optional Database Customization

	Example

	How to Configure helyOS Core as Backend
	Admin Dashboard
	“Yards” View
	“Register Agents” View
	Other Options for Registering Agents

	The “Define Missions” View
	“Microservices” View
	The Dummy Service

	“Missions Recipes” View

	helyOS and Client Apps
	Application accounts
	Communication
	Requesting Missions
	Handling the Mission Execution

	helyOS and Microservices
	Missions Request: from App to helyOS core
	Service Requests: from helyOS to Microservices
	Service Response: from Microservices to helyOS
	Assignment Creation
	Mission Sequence

	Models Description

	helyOS and Agents
	Exchange, Routing-keys and Queues in RabbitMQ
	Code Examples
	Check in agent in helyOS
	Data Flow between helyOS and Agents
	helyOS Reserves Agent for Mission
	helyOS Sends Assignment to Agent
	Agent Requests a Mission

	Applications in yard automation
	Implementation of a Yard Automation Application
	What is possible in the helyOS framework?

	Examples of missions using helyOS

	FAQ
	Why not code everything in a single backend? Why do I need helyOS?
	What are microservices?
	What does it means that “helyOS orchestrates microservices”?
	What does it means that “helyOS orchestrates assignments”?
	Can helyOS calculate trajectory paths?
	Can I send several missions at once to one automated vehicle?
	What is the difference between mission and assignment?
	What is the data format for the agent sensors?
	I want to use an online server for path calculation (or map information) which has its own API. How can I integrate with helyOS?
	What is the difference between helyOS and Automation App?

